Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.

Identifieur interne : 000343 ( Main/Exploration ); précédent : 000342; suivant : 000344

Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.

Auteurs : María Teresa Martínez-Pastor [Espagne] ; Ana Perea-García [Espagne] ; Sergi Puig [Espagne]

Source :

RBID : pubmed:28315258

Descripteurs français

English descriptors

Abstract

Iron is a redox active element that functions as an essential cofactor in multiple metabolic pathways, including respiration, DNA synthesis and translation. While indispensable for eukaryotic life, excess iron can lead to oxidative damage of macromolecules. Therefore, living organisms have developed sophisticated strategies to optimally regulate iron acquisition, storage and utilization in response to fluctuations in environmental iron bioavailability. In the yeast Saccharomyces cerevisiae, transcription factors Aft1/Aft2 and Yap5 regulate iron metabolism in response to low and high iron levels, respectively. In addition to producing and assembling iron cofactors, mitochondrial iron-sulfur (Fe/S) cluster biogenesis has emerged as a central player in iron sensing. A mitochondrial signal derived from Fe/S synthesis is exported and converted into an Fe/S cluster that interacts directly with Aft1/Aft2 and Yap5 proteins to regulate their transcriptional function. Various conserved proteins, such as ABC mitochondrial transporter Atm1 and, for Aft1/Aft2, monothiol glutaredoxins Grx3 and Grx4 are implicated in this iron-signaling pathway. The analysis of a wide range of S. cerevisiae strains of different geographical origins and sources has shown that yeast strains adapted to high iron display growth defects under iron-deficient conditions, and highlighted connections that exist in the response to both opposite conditions. Changes in iron accumulation and gene expression profiles suggest differences in the regulation of iron homeostasis genes.

DOI: 10.1007/s11274-017-2215-8
PubMed: 28315258


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Martinez Pastor, Maria Teresa" sort="Martinez Pastor, Maria Teresa" uniqKey="Martinez Pastor M" first="María Teresa" last="Martínez-Pastor">María Teresa Martínez-Pastor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain. maria.teresa.martinez@uv.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Perea Garcia, Ana" sort="Perea Garcia, Ana" uniqKey="Perea Garcia A" first="Ana" last="Perea-García">Ana Perea-García</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Puig, Sergi" sort="Puig, Sergi" uniqKey="Puig S" first="Sergi" last="Puig">Sergi Puig</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain. spuig@iata.csic.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28315258</idno>
<idno type="pmid">28315258</idno>
<idno type="doi">10.1007/s11274-017-2215-8</idno>
<idno type="wicri:Area/Main/Corpus">000360</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000360</idno>
<idno type="wicri:Area/Main/Curation">000360</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000360</idno>
<idno type="wicri:Area/Main/Exploration">000360</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Martinez Pastor, Maria Teresa" sort="Martinez Pastor, Maria Teresa" uniqKey="Martinez Pastor M" first="María Teresa" last="Martínez-Pastor">María Teresa Martínez-Pastor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain. maria.teresa.martinez@uv.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Perea Garcia, Ana" sort="Perea Garcia, Ana" uniqKey="Perea Garcia A" first="Ana" last="Perea-García">Ana Perea-García</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Puig, Sergi" sort="Puig, Sergi" uniqKey="Puig S" first="Sergi" last="Puig">Sergi Puig</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain. spuig@iata.csic.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia</wicri:regionArea>
<wicri:noRegion>Valencia</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">World journal of microbiology & biotechnology</title>
<idno type="eISSN">1573-0972</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sulfur (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Soufre (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Iron</term>
<term>Mitochondrial Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sulfur</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Fer</term>
<term>Mitochondries</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines mitochondriales</term>
<term>Saccharomyces cerevisiae</term>
<term>Soufre</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron is a redox active element that functions as an essential cofactor in multiple metabolic pathways, including respiration, DNA synthesis and translation. While indispensable for eukaryotic life, excess iron can lead to oxidative damage of macromolecules. Therefore, living organisms have developed sophisticated strategies to optimally regulate iron acquisition, storage and utilization in response to fluctuations in environmental iron bioavailability. In the yeast Saccharomyces cerevisiae, transcription factors Aft1/Aft2 and Yap5 regulate iron metabolism in response to low and high iron levels, respectively. In addition to producing and assembling iron cofactors, mitochondrial iron-sulfur (Fe/S) cluster biogenesis has emerged as a central player in iron sensing. A mitochondrial signal derived from Fe/S synthesis is exported and converted into an Fe/S cluster that interacts directly with Aft1/Aft2 and Yap5 proteins to regulate their transcriptional function. Various conserved proteins, such as ABC mitochondrial transporter Atm1 and, for Aft1/Aft2, monothiol glutaredoxins Grx3 and Grx4 are implicated in this iron-signaling pathway. The analysis of a wide range of S. cerevisiae strains of different geographical origins and sources has shown that yeast strains adapted to high iron display growth defects under iron-deficient conditions, and highlighted connections that exist in the response to both opposite conditions. Changes in iron accumulation and gene expression profiles suggest differences in the regulation of iron homeostasis genes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28315258</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>04</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-0972</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2017</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>World journal of microbiology & biotechnology</Title>
<ISOAbbreviation>World J Microbiol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11274-017-2215-8</ELocationID>
<Abstract>
<AbstractText>Iron is a redox active element that functions as an essential cofactor in multiple metabolic pathways, including respiration, DNA synthesis and translation. While indispensable for eukaryotic life, excess iron can lead to oxidative damage of macromolecules. Therefore, living organisms have developed sophisticated strategies to optimally regulate iron acquisition, storage and utilization in response to fluctuations in environmental iron bioavailability. In the yeast Saccharomyces cerevisiae, transcription factors Aft1/Aft2 and Yap5 regulate iron metabolism in response to low and high iron levels, respectively. In addition to producing and assembling iron cofactors, mitochondrial iron-sulfur (Fe/S) cluster biogenesis has emerged as a central player in iron sensing. A mitochondrial signal derived from Fe/S synthesis is exported and converted into an Fe/S cluster that interacts directly with Aft1/Aft2 and Yap5 proteins to regulate their transcriptional function. Various conserved proteins, such as ABC mitochondrial transporter Atm1 and, for Aft1/Aft2, monothiol glutaredoxins Grx3 and Grx4 are implicated in this iron-signaling pathway. The analysis of a wide range of S. cerevisiae strains of different geographical origins and sources has shown that yeast strains adapted to high iron display growth defects under iron-deficient conditions, and highlighted connections that exist in the response to both opposite conditions. Changes in iron accumulation and gene expression profiles suggest differences in the regulation of iron homeostasis genes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Martínez-Pastor</LastName>
<ForeName>María Teresa</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain. maria.teresa.martinez@uv.es.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perea-García</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Puig</LastName>
<ForeName>Sergi</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-1856-490X</Identifier>
<AffiliationInfo>
<Affiliation>Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain. spuig@iata.csic.es.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>World J Microbiol Biotechnol</MedlineTA>
<NlmUniqueID>9012472</NlmUniqueID>
<ISSNLinking>0959-3993</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aft1</Keyword>
<Keyword MajorTopicYN="N">Fe-S cluster synthesis</Keyword>
<Keyword MajorTopicYN="N">Iron deficiency</Keyword>
<Keyword MajorTopicYN="N">Iron homeostasis</Keyword>
<Keyword MajorTopicYN="N">Saccharomyces cerevisiae</Keyword>
<Keyword MajorTopicYN="N">Yap5</Keyword>
<Keyword MajorTopicYN="N">Yeast</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28315258</ArticleId>
<ArticleId IdType="doi">10.1007/s11274-017-2215-8</ArticleId>
<ArticleId IdType="pii">10.1007/s11274-017-2215-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chem Commun (Camb). 2015 Feb 11;51(12):2253-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25556595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jan 14;120(1):99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15652485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):669-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23916750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Jul 15;18(14):3981-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10406803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12321-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Oct 12;287(42):35709-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2009 Oct;109(10):4536-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19705827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Mar 25;11(3):e1005106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25806539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Oct;11(10):772-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26302480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Apr 29;291(18):9796-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26966178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22616008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 13;277(37):33749-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12095998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Feb 8;25(3):512-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16437160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 04;9(6):e98959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24897379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Jun;7(6):555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18522836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):662-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23962819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14322-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Feb;28(4):1326-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18070921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Mar 15;14(6):1231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7720713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 25;278(30):27636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Mar 7;343(6175):1137-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24604199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2014 Dec;22:111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25460804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 3;276(31):29515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 4;286(44):38488-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21917924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Mar 19;458(7236):337-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19212322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Feb 28;51(8):1687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22309771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Nov 6;290(45):26968-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26306041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 7;276(36):34221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11448968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2015 Jul-Sep;94(7-9):292-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26116073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Dec 09;3(12):2187-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24142925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Jul 4;134(26):10745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22687047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18914-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11877447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 22;289(34):23264-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25006243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2015 Dec;4(6):941-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26450372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 28;283(13):8318-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18227070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 17;278(42):40612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12902335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Mar 7;343(6175):1133-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2015 Jan;35(2):370-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25368382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2014 Oct 1;33(19):2261-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25092765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Mar;15(3):1233-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Dec;32(24):4998-5008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2015 Dec;20(8):1221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26468125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(15):6760-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16024809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Aug 27;279(35):36906-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):2980-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17538022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Jan 15;82(6):1906-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26773083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Nutr. 2008;28:197-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18489257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 26;277(30):26944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2010 May;27(5):245-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20148391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 May 18;30(10):2044-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478822</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<country name="Espagne">
<noRegion>
<name sortKey="Martinez Pastor, Maria Teresa" sort="Martinez Pastor, Maria Teresa" uniqKey="Martinez Pastor M" first="María Teresa" last="Martínez-Pastor">María Teresa Martínez-Pastor</name>
</noRegion>
<name sortKey="Perea Garcia, Ana" sort="Perea Garcia, Ana" uniqKey="Perea Garcia A" first="Ana" last="Perea-García">Ana Perea-García</name>
<name sortKey="Puig, Sergi" sort="Puig, Sergi" uniqKey="Puig S" first="Sergi" last="Puig">Sergi Puig</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000343 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000343 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28315258
   |texte=   Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28315258" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020